机读格式显示(MARC)
- 000 02418pam a2200313 a 4500
- 008 051011s2006 nyua sb 001 0 eng
- 040 __ |a DLC |c DLC |d YDX |d BAKER
- 050 00 |a QA9 |b .V38 2006
- 100 1_ |a Velleman, Daniel J.
- 245 10 |a How to prove it : |b a structured approach |h [electronicresource] / |c Daniel J. Velleman.
- 260 __ |a New York : |b Cambridge University Press, |c 2006.
- 300 __ |a 1 online resource (xiii, 384 p.) : |b ill.
- 500 __ |a Descriptionbasedonprintversionrecord.
- 504 __ |a Includes bibliographical references (p. 375) and index.
- 505 0_ |a Introduction -- Sentential logic -- 1.1 Deductive reasoning and logical connectives -- 1.2 truth tables -- 1.3 variables and sets -- 1.4 operations on sets -- 1.5 The conditional and biconditional connectives -- Quantificational logic -- 2.1 Quantifiers -- 2.2 Equivalences involving quantifiers -- 2.3 More operations on sets -- Proofs -- 3.1 proof strategies -- 3.2 proofs involving negations and conditionals -- 3.3 Proofs involving quantifiers -- 3.4 Proofs involving conjunctions and biconditionals -- 3.5 Proofs involving disjunctions -- 3.6 Existence and uniqueness proofs -- 3.7 More examples of proofs -- Relations -- 4.1 Ordered pairs and cartesian products -- 4.2 Relations -- 4.3 More about relations -- 4.4 Ordering relations -- 4.5 Closures -- 4.6 Equivalence relations -- Functions -- 5.1 Functions -- 5.2 One-to-one and onto -- 5.3 Inverses of functions -- 5.4 Images and inverse images: a research project -- Mathematical induction -- 6.1 Proof by mathematical induction -- 6.2 More examples -- 6.3 Recursion -- 6.4 Strong induction -- 6.5 Closures again -- Infinite sets -- 7.1 Equinumerous sets -- 7.2 Countable and uncountable sets -- 7.3 The cantor--Schroder--Bernstein theorem -- Appendix 1: Solutions to selected exercises -- Appendix 2: Proof designer -- Suggestions for further reading -- Summary for proof techniques -- Index.
- 650 _0 |a Logic, Symbolic and mathematical.
- 856 4_ |u http://www.itextbook.cn/f/book/bookDetail?bookId=afd1670c79fd4fbf9968f2396f5ef38a |z An electronic book accessible through the World Wide Web; click to view